-1 <= (x^2 - 5x + 4) / (x^2 - 4) <= 1;<br>
(x^2 - 5x + 4) / (x^2 - 4) - 1 <= 0;<br>(-5x + 8) / ((x - 2) * (x + 2)) <= 0;<br>x ∈ (-2; -1.6] U (2; +00);
-1 <= (x^2 - 5x + 4) / (x^2 - 4<span>);
(x^2 - 5x + 4) / (x^2 - 4) + 1 >= 0;
(2x^2 - 5x) / ((x - 2) * (x + 2)) >= 0;
x(2x - 5) / ((x - 2) * (x + 2)) >= 0;
x ∈ (-00; -2) U [0; 2) U [2.5; +00);
Ответ: x ∈ [2.5; +00).