Как упрощать выражение. уровнение. желательно правило.

0 голосов
21 просмотров

Как упрощать выражение. уровнение. желательно правило.


Математика | 21 просмотров
Дан 1 ответ
0 голосов

ССвойства сложения, вычитания, умножения и деления полезны тем, что позволяют преобразовывать суммы и произведения в удобные выражения для вычислений. Научимся, как можно с помощью этих свойств упрощать выражения.

Вычислим сумму:

52 + 287 + 48 + 13 =

В этом выражении есть числа, при сложении которых получаются «круглые» числа. Заметив это, легко провести вычисления устно. Воспользуемся переместительным законом сложения.



Также для упрощения вычисления произведений можно использовать переместительный закон умножения.

7 · 2 · 9 · 5 = (2 · 5) · (7 · 9) = 10 · 63 = 630 

Сочетательные и переместительные свойства используются и при упрощении буквенных выражений.

6 · a · 2 = 6 · 2 · a = 12a2 · a · 4 · b = 2 · 4 · a · b = 8ab5b + 8b = (5 + 8) · b = 13b14y − 12y = (14 − 12) · y = 2y

Распределительный закон умножения часто применяется для упрощения вычислений.



Применяя распределительное свойство умножения относительно сложения или вычитания к выражению (a + b) · с и (a − b) · c, мы получаем выражение, не содержащее скобки.

В этом случае говорят, что мы раскрыли (опустили) скобки. Для применения свойств не имеет значения, где записан множитель «c» — перед скобками или после.

Раскроем скобки в выражениях.

2(t + 8) = 2t + 16(3x − 5)4 = 4 · 3x − 4 · 5 = 12x − 20

Запомните!

Если перед буквой не записано число, то подразумевается, что перед буквой стоит числовой множитель 1.

t + 4t = (1 + 4)t = 5t

Вынесение общего множителя за скобки

Поменяем местами правую и левую часть равенства:

(a + b)с = ac + bc

Получим:

ac + bc = (a + b)с

В таких случаях говорят, что из «ac + bc»вынесен общий множитель «с» за скобки.

Примеры вынесения общего множителя за скобки.

73 · 8 + 7 · 8 = (73 + 7) · 8 = 80 · 8 = 6407x − x − 6 = (7 − 1)x − 6 = 6x − 6 = 6(x − 1)

(954 баллов)