40 баллов. 429 номер (два последних),внизу (если log 3 2l

0 голосов
24 просмотров

40 баллов. 429 номер (два последних),внизу (если log 3 2l


image

Алгебра (288 баллов) | 24 просмотров
0

Номера не видно

0

Действительно, не видно номера :)

0

Извините, в самом внизу (если log3 2)

Дано ответов: 2
0 голосов
Правильный ответ

Log(270)350=log(3)(2*5²*7)/log(3)(3³*2*5)=
=[log(3)2+2log(3)5+log(3)7]/[3+log(3)2+log(3)5]=(a+2b+c)/(3+a+b)

log(490)1250=[log(3)(2*5^4)]/[log(3)(2*5*7²)]=
=[log(3)2+4log(3)5]/[log(3)2+log(3)5+2log(3)7]=(a+4b)/(a+b+2c)

log(280)105=[log(3)(3*5*7)]/[log(3)(2³*5*7)]=
=[(1+log(3)5+log(3)7]/[3log(3)2+log(3)5+log(3)7]=(1+b+c)/(3a+b+c)

log(90)315=[log(3)(3²*5*7)]/[log(3)(3²*2*5)]=
=[(2+log(3)5+log(3)7]/[(2+log(3)2+log(3)5]=(2+b+c)/(2+a+b)

(750k баллов)
0

Зато я в ТеХе набираю :)

0 голосов

Привет :)
Ничего, кроме свойств логарифма здесь использоваться не будет. Просто переходим к новому основанию и раскладываем на множители.

Итак, нам известно следующее:
\log_32 = a, \ \log_35 = b, \ \log_37 = c. \\
a. \ \ \log_{280}{105} = \frac{\log_3{105}}{\log_3{280}} = \\
= \frac{\log_3{(3 \cdot 5 \cdot 7)}}{\log_3{(5 \cdot 7 \cdot 2^3 )}} = \frac{\log_33 + \log_35 + \log_37}{\log_35 + \log_37 + 3 \log_32 } = \\
= \frac{b + c +1}{3a+b+c }.

Второе аналогично:
b. \ \ \log_{90}{315} = \frac{\log_3{315}}{\log_3{90}} = \\
= \frac{\log_3{(3^2 \cdot 5 \cdot 7)}}{\log_3{(3^2 \cdot 5 \cdot 2 )}} = \frac{2\log_33 + \log_35 + \log_37}{2\log_33 + \log_35 + \log_32 } = \\
= \frac{b + c +2}{a+b+2 }.

(2.0k баллов)