решить уравнение
5√x-5/√x=24
Решаем с помощью замены переменной корень из х=t, также накладыается ограничение на t>0 Получаем 5t-5/t=24, домножаем на t и получаем квадратное уравнение: 5t^2-24t-5=0,решаем его и получаем решения:t1=-1/5;t2=5;так как у нас есть ограничение на t ,нам подходит только t2 Возвращаемся к замене корень из х=5 получаем что х=25
положим,что √x=t, t>0. тогда наше уравнение примет вид
5t-5/t=24
5t²-24t-5=0
D=576+100=676=26²
t1=(24+26)/10=5
t2=(24-26)/10=-1/5 но t>0, поэтому остается единственный корень t=5, тогда x=5²=25