Пользуясь определением,выведете формулу дифференцирования функции y=корень из 1+2х

0 голосов
119 просмотров

Пользуясь определением,выведете формулу дифференцирования функции y=корень из 1+2х


Алгебра (148 баллов) | 119 просмотров
Дан 1 ответ
0 голосов

Производная по определению - предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует.

 

Δy = f(x+Δx) - f(x) = √(1+2(x+Δx)) - √(1+2x) = √(1+2x+2Δx) - √(1+2x)

Преобразуем выражение, домножив числитель и знаменатель на сопряженное выражение:

(√(1+2x+2Δx) - √(1+2x))(√(1+2x+2Δx) + √(1+2x))/(√(1+2x+2Δx) + √(1+2x)) = (1+2x+2Δx - 1 -2x)/(√(1+2x+2Δx) + √(1+2x))= (2Δx)/(√(1+2x+2Δx) + √(1+2x))

Δy/Δx = 2/(√(1+2x+2Δx) + √(1+2x))

limΔx->0 (2/(√(1+2x+2Δx) + √(1+2x)) = 2/(√(1+2x) + √(1+2x)) = 2/(2√(1+2x) = 1/√(1+2x)

Ответ: y' = 1/√(1+2x)

(26 баллов)