(Построить графики не смогу, но закон распределения и функцию распределения найду).
Пусть случайная величина (далее - СВ) х - число неточных приборов среди трёх взятых. Очевидно, что эта СВ может принимать значения 0,1,2,3. Вычислим вероятности этих значений:
р(0)=(14/20)³=2744/8000=0,343, р(1)=(6/20)¹*(14/20)²*3!/(1!*(3-1)!)=1176/8000*6/2=3528/8000=0,441, р(2)=(6/20)²*(14/20)¹*3!/(2!*(3-2)!)=1512/8000=0,189, р(3)=(6/20)³=216/8000=0,027.
(Проверка: 0,343+0,441+0,189+0,027=1, так что вероятности найдены верно)
Таким образом, мы нашли закон распределения данной СВ, который можно записать в виде таблицы:
Xi 0 1 2 3
Pi 0,343 0,441 0,189 0,027
По найденным данным можно построить многоугольник распределения и функцию распределения.
Математическое ожидание
М=∑Xi*Pi=0*0,343+1*0,441+2*0,189+3*0,027=0,9
Дисперсия
D=∑(Xi-M)²*Pi=(0-0,9)²*0,343+(1-0,9)²*0,441+(2-0,9)²*0,189+(3-0,9)²*0,027=0,27783+0,00441+0,22869+0,11907=0,63.