1) Воспользуемся формулой суммы синусов
![\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}](https://tex.z-dn.net/?f=%5Csin%5Calpha%2B%5Csin%5Cbeta%3D2%5Csin%5Cfrac%7B%5Calpha%2B%5Cbeta%7D%7B2%7D%5Ccos%5Cfrac%7B%5Calpha-%5Cbeta%7D%7B2%7D)
![\sin19^0+\sin17^0+\sin15^0=(\sin19^0+\sin15^0)+\sin17^0 \sin19^0+\sin17^0+\sin15^0=(\sin19^0+\sin15^0)+\sin17^0](https://tex.z-dn.net/?f=%5Csin19%5E0%2B%5Csin17%5E0%2B%5Csin15%5E0%3D%28%5Csin19%5E0%2B%5Csin15%5E0%29%2B%5Csin17%5E0)
![(\sin19^0+\sin15^0)+\sin17^0=2\sin\frac{19^0+15^0}{2}\cos\frac{19^0-15^0}{2}+\sin17^0 (\sin19^0+\sin15^0)+\sin17^0=2\sin\frac{19^0+15^0}{2}\cos\frac{19^0-15^0}{2}+\sin17^0](https://tex.z-dn.net/?f=%28%5Csin19%5E0%2B%5Csin15%5E0%29%2B%5Csin17%5E0%3D2%5Csin%5Cfrac%7B19%5E0%2B15%5E0%7D%7B2%7D%5Ccos%5Cfrac%7B19%5E0-15%5E0%7D%7B2%7D%2B%5Csin17%5E0)
![2\sin\frac{19^0+15^0}{2}\cos\frac{19^0-15^0}{2}+\sin17^0=2\sin17^0\cos2^0+\sin17^0 2\sin\frac{19^0+15^0}{2}\cos\frac{19^0-15^0}{2}+\sin17^0=2\sin17^0\cos2^0+\sin17^0](https://tex.z-dn.net/?f=2%5Csin%5Cfrac%7B19%5E0%2B15%5E0%7D%7B2%7D%5Ccos%5Cfrac%7B19%5E0-15%5E0%7D%7B2%7D%2B%5Csin17%5E0%3D2%5Csin17%5E0%5Ccos2%5E0%2B%5Csin17%5E0)
![2\sin17^0\cos2^0+\sin17^0=\sin17^0*(2\cos2^0+1) 2\sin17^0\cos2^0+\sin17^0=\sin17^0*(2\cos2^0+1)](https://tex.z-dn.net/?f=2%5Csin17%5E0%5Ccos2%5E0%2B%5Csin17%5E0%3D%5Csin17%5E0%2A%282%5Ccos2%5E0%2B1%29)
В итоге
![\sin19^0+\sin17^0+\sin15^0=\sin17^0*(2\cos2^0+1) \sin19^0+\sin17^0+\sin15^0=\sin17^0*(2\cos2^0+1)](https://tex.z-dn.net/?f=%5Csin19%5E0%2B%5Csin17%5E0%2B%5Csin15%5E0%3D%5Csin17%5E0%2A%282%5Ccos2%5E0%2B1%29)
2) Так как косинус положительный и принадлежит 4-й четвери, то синус в этой четверти будет отрицательным. Вычислим синус
![\sin\alpha=-\sqrt{1-0,8^2}=-\sqrt{1-0,64}=-\sqrt{0,36}=-\sqrt{0,6^2}=-0,6 \sin\alpha=-\sqrt{1-0,8^2}=-\sqrt{1-0,64}=-\sqrt{0,36}=-\sqrt{0,6^2}=-0,6](https://tex.z-dn.net/?f=%5Csin%5Calpha%3D-%5Csqrt%7B1-0%2C8%5E2%7D%3D-%5Csqrt%7B1-0%2C64%7D%3D-%5Csqrt%7B0%2C36%7D%3D-%5Csqrt%7B0%2C6%5E2%7D%3D-0%2C6)
Теперь воспользуемся формулами двойного угла
![\sin2\alpha=2\sin\alpha\cos\alpha=2*(-0,6)*0,8=2*(-0,48)=-0,96 \sin2\alpha=2\sin\alpha\cos\alpha=2*(-0,6)*0,8=2*(-0,48)=-0,96](https://tex.z-dn.net/?f=%5Csin2%5Calpha%3D2%5Csin%5Calpha%5Ccos%5Calpha%3D2%2A%28-0%2C6%29%2A0%2C8%3D2%2A%28-0%2C48%29%3D-0%2C96)
![\cos2\alpha=\cos^2\alpha-\sin^2\alpha=0,8^2-0,6^2=0,64-0,36=0,28 \cos2\alpha=\cos^2\alpha-\sin^2\alpha=0,8^2-0,6^2=0,64-0,36=0,28](https://tex.z-dn.net/?f=%5Ccos2%5Calpha%3D%5Ccos%5E2%5Calpha-%5Csin%5E2%5Calpha%3D0%2C8%5E2-0%2C6%5E2%3D0%2C64-0%2C36%3D0%2C28)
Заметим, что оба числа по модулю меньше 1.