![f(x) = 9^x + 5*3^{-2x} = 3^{2x} + 5*3^{-2x}\\\\ f'(x) = 2*3^{2x}ln3 -10*3^{-2x}ln3\\\\ f(x) = 9^x + 5*3^{-2x} = 3^{2x} + 5*3^{-2x}\\\\ f'(x) = 2*3^{2x}ln3 -10*3^{-2x}ln3\\\\](https://tex.z-dn.net/?f=f%28x%29+%3D+9%5Ex+%2B+5%2A3%5E%7B-2x%7D+%3D+3%5E%7B2x%7D+%2B+5%2A3%5E%7B-2x%7D%5C%5C%5C%5C+f%27%28x%29+%3D+2%2A3%5E%7B2x%7Dln3+-10%2A3%5E%7B-2x%7Dln3%5C%5C%5C%5C)
![f'(x) = 0; \ 2*3^{2x}ln3 -10*3^{-2x}ln3 = 0\\\\3^{2x} -5*3^{-2x} = 0\\\\ 3^{2x} = 5*3^{-2x}\\\\ 1/5 = 3^{-4x}, \ 3^{4x} = 5, \ 81^x = 5, \ x = log_{81}5\\ f'(x) = 0; \ 2*3^{2x}ln3 -10*3^{-2x}ln3 = 0\\\\3^{2x} -5*3^{-2x} = 0\\\\ 3^{2x} = 5*3^{-2x}\\\\ 1/5 = 3^{-4x}, \ 3^{4x} = 5, \ 81^x = 5, \ x = log_{81}5\\](https://tex.z-dn.net/?f=f%27%28x%29+%3D+0%3B+%5C+2%2A3%5E%7B2x%7Dln3+-10%2A3%5E%7B-2x%7Dln3+%3D+0%5C%5C%5C%5C3%5E%7B2x%7D+-5%2A3%5E%7B-2x%7D+%3D+0%5C%5C%5C%5C+3%5E%7B2x%7D+%3D+5%2A3%5E%7B-2x%7D%5C%5C%5C%5C+1%2F5+%3D+3%5E%7B-4x%7D%2C+%5C+3%5E%7B4x%7D+%3D+5%2C+%5C+81%5Ex+%3D+5%2C+%5C+x+%3D+log_%7B81%7D5%5C%5C)
0, x > log_{81}5\\\\" alt="f(x) < 0, x < log_{81}5,\\\\ f(x) > 0, x > log_{81}5\\\\" align="absmiddle" class="latex-formula">
Функция f(x) имеет в точке x = log_{81}5, минимум.
![f(log_{81}5) = 3^{2log_{81}5} + 5*3^{-2log_{81}5} = 3^{2log_{3^4}5} + 5*3^{-2log_{3^4}5} =\\\\ 3^{log_{3}\sqrt{5}} + 5*3^{log_{3}(1/\sqrt{5})} = \sqrt{5} + 5/\sqrt{5} = 2\sqrt{5} f(log_{81}5) = 3^{2log_{81}5} + 5*3^{-2log_{81}5} = 3^{2log_{3^4}5} + 5*3^{-2log_{3^4}5} =\\\\ 3^{log_{3}\sqrt{5}} + 5*3^{log_{3}(1/\sqrt{5})} = \sqrt{5} + 5/\sqrt{5} = 2\sqrt{5}](https://tex.z-dn.net/?f=f%28log_%7B81%7D5%29+%3D+3%5E%7B2log_%7B81%7D5%7D+%2B+5%2A3%5E%7B-2log_%7B81%7D5%7D+%3D+3%5E%7B2log_%7B3%5E4%7D5%7D+%2B+5%2A3%5E%7B-2log_%7B3%5E4%7D5%7D+%3D%5C%5C%5C%5C+3%5E%7Blog_%7B3%7D%5Csqrt%7B5%7D%7D+%2B+5%2A3%5E%7Blog_%7B3%7D%281%2F%5Csqrt%7B5%7D%29%7D+%3D+%5Csqrt%7B5%7D+%2B+5%2F%5Csqrt%7B5%7D+%3D+2%5Csqrt%7B5%7D)
При x -> +∞, f(x) - > +∞, при x -> -∞, f(x) - > +∞
Mножество значений функции f(x): ![[2\sqrt{5}, +\infty) [2\sqrt{5}, +\infty)](https://tex.z-dn.net/?f=%5B2%5Csqrt%7B5%7D%2C+%2B%5Cinfty%29)