4^(2x-3) - 4*2^(2x-1) + 48 <= 0</p>
4^(2x) / 4^3 - 4*2^(2x) / 2 + 48 <= 0</p>
замена 2^(2x) === t t^2 = (2^(2x) )^2 = 2^(2x*2) = (2^2)^(2x) = 4^(2x)
t^2/64 - 2t + 48 <= 0</span>
t^2 - 2*64*t + 48*64 <= 0</span>
D = 2*64*2*64 - 4*48*64 = 4*64*(64-48) = 4*64*16 = 64*64
t1 = (2*64 + 64)/2 = 64+32 = 96
t2 = (2*64 - 64)/2 = 64-32 = 32
32 <= t <= 96</span>
2^5 <= 2^(2x) <= 3*2^5</p>
5 <= 2x <= 5 + log(2)3</p>
2.5 <= x <= 2.5 + (log по основанию 2 числа 3) / 2</p>