ОДЗ
cosx≤0⇒x∈[π/2+2πn;3π/2+2πn,n∈z]
cosx=0⇒x=π/2+2πn
-5π≤π/2+2πn≤-7π/2
-10≤1+4n≤-7
-11≤4n≤-8
-11/4≤n≤-2
n=-2⇒x=π/2-4π=-7π/2
√2sinx+1=0
sinx=-1/√2
x=5π/4+2πk (с учетом ОДЗ)
-5π≤5π/4+2πk≤-7π/2
-20≤5+8k≤-14
-25≤8k≤-19
-25/8≤k≤-19/8
k=-3⇒x=5π/4-6π=-19π/4