Координаты вершины параболы должны удовлетворять условию
x^2 + y^2 = 5^2
Координаты вершины параболы:
x = -b / 2a = -6 / 2a = -3 / a
y = - (b^2 - 4ac)/4a = - (6^2 - 4*a*(-5) / 4a = -(36 + 20a) / 4a = -9/a - 5
Подставим эти значения в первое уравнение:
(-3 / a)^2 + (-9/a - 5)^2 = 25
9/a^2 + 81/a^2 + 25 + 90/a = 25
90/a^2 + 90/a = 0
ОДЗ:a \neq 0
1/ a^2 + 1/a = 0
1 + a = 0
a = -1
Ответ: -1