2 - cos 2x + 3 sin x = 0
cos(2x)=1-2sin^2(x)
2-(1-2sin^2(x))+3sinx=0
2-1+2sin^2(x)+3sin(x)=0
2sin^2(x)+3sin(x)+1=0
D=9-8=1
Объединение :
sin(x)=(-3+1)/4=-1/2
sin(x)=(-3-1)/4=-1
Объединение:
x=-pi/2+2pi*n
x=(-1)^(n+1)*pi/6+ pi*k , где n,k принадлежат Z
2-2cos^2(x)+1+3sinx=0
2-2(1-sin^2(x))+1+3sinx=0
sinx=(-3-1)/4=-1 sinx=(-3+1)/4=-0.5
x=-П/2+Пn x=(-1)^(n+1)*arcsin(0.5)+Пn
x=(-1)^(n+1)*П/6+Пn