Y=x⁴-8x²
1) Находим область определения функции:
D(y)=R Данная функция непрерывна на R
2) Находим производную функции:
y`(x)=4x³-16x=4x(x²-4)=4x(x-2)(x+2)
3) Находим критические точки:
D(y`)=R y`(x)=0
4x(x-2)(x+2)=0
x=0 или х=2 или х=-2
4) Находим знак производной и характер поведения функции:
- + - +
___________-2__________0______________2___________
↓ min ↑ max ↓ min ↑
у(х) - убывает на х∈(-∞;-2)U(0;2)
у(х) - возрастает на (-2;0)U(2;+∞)
х=-2 и х=2 - точки минимума функции
х=0 - точка максимума функции
-2; 0; 2- точки экстремума функции
у(-2)=(-2)⁴-8*(-2)²=16-8*4=16-32=-16
у(2)=2⁴-8*2²=16-8*4=16-32=-16
у(0)=0⁴-8*0²=0-0=0
Ответ: Функция монотонно возрастает на (-2;0)U(2:+∞) и монотонно убывает на (-∞;-2)U(0;2), x(min)=(+-)2, y(min)=-16, x(max)=0, y(max)=0