6/(x+1)(x+2)+8/(x-1)(x+4)=1

0 голосов
59 просмотров

6/(x+1)(x+2)+8/(x-1)(x+4)=1


Математика (26 баллов) | 59 просмотров
Дан 1 ответ
0 голосов

(x+1)*(x+2) = x^2 +3x+2;
(x-1)*(x+4) = x^2+3x - 4;
x^2 + 3x = y;
(6/(y+2)) + (8/(y-4)) = 1;
y не=-2 и y не=4;
6*(y-4) + 8*(y+2) = (y+2)*(y-4);
6y-24 + 8y +16 = y^2 - 2y -8;
y^2 -y*(2+8+6) - 8 + 24 -16 = 0;
y^2 - 16y =0;
y*(y-16) = 0;
y=0 или y-16=0;
1) y=0; <=> x^2+3x = 0; <=> x*(x+3) = 0; <=> x1=0; или x2=-3.
2) y-16 = 0; <=> x^2+3x - 16 = 0;
D = 3^2 + 4*16 = 9+64 = 73;
x3 = (-3+(V73))/2;
x4 = (-3-(V73))/2.