Sinx=cos2x=1-2sin²x 2sin²x +sinx-1=0 D=1+8 √D=3
sinx=0.25[-1-3]=-1 x=3π/2+2πk k∈Z
sinx=0.25[-1+3]=1/2 x=(-1)ⁿ * π/6+πn n∈Z
8(1-sin²x)+6sinx-3=0
-8sin²x+8+6sinx-3 =-8sin²x+6sinx+5=0
8sin²x-6sinx-5=0 D=36+160=196 √D =14
sinx=1/16[6+14]=20/16 >1
sinx=1/16[6-14]=-1/2 x=(-1)ⁿ⁺¹π/6+πn n∈Z
.