1)
\frac{2}{3}, y'<0, y\searrow \ , \\ x_{max}=\frac{2}{3}, y_{max}=4\sqrt\frac{2}{3}(2-\frac{2}{3})=\frac{16\sqrt6}{9} " alt="0<x<x<\frac{2}{3}, y\nearrow \ , \\ x>\frac{2}{3}, y'<0, y\searrow \ , \\ x_{max}=\frac{2}{3}, y_{max}=4\sqrt\frac{2}{3}(2-\frac{2}{3})=\frac{16\sqrt6}{9} " align="absmiddle" class="latex-formula">
3)
6)
\frac{a}{2}, y'>0, y\nearrow \ , \\ x_{min}=\frac{a}{2}, y_{min}=4(\frac{a}{2})^2-4a\cdot\frac{a}{2}+(\frac{a}{2})^2-2\cdot\frac{a}{2}+2= \\ =a^2-2a^2+\frac{a^2}{4}-a+2=-\frac{3a^2}{4}-a+2, \\ -\frac{3a^2}{4}-a+2=3, \\ -\frac{3a^2}{4}-a-1=0, \\ 3a^2-4a-4=0, \\ \frac{D}{4}=16, \\ a_1=-\frac{2}{3}, \\ a_2=2." alt="y=4x^2-4ax+a^2-2a+2, \\ y'=8x-4a, \\ y'=0, 8x-4a=0, 8x=4a, x=\frac{a}{2}, \\ x<\frac{a}{2}, y'<0, y\searrow \ , \\ x>\frac{a}{2}, y'>0, y\nearrow \ , \\ x_{min}=\frac{a}{2}, y_{min}=4(\frac{a}{2})^2-4a\cdot\frac{a}{2}+(\frac{a}{2})^2-2\cdot\frac{a}{2}+2= \\ =a^2-2a^2+\frac{a^2}{4}-a+2=-\frac{3a^2}{4}-a+2, \\ -\frac{3a^2}{4}-a+2=3, \\ -\frac{3a^2}{4}-a-1=0, \\ 3a^2-4a-4=0, \\ \frac{D}{4}=16, \\ a_1=-\frac{2}{3}, \\ a_2=2." align="absmiddle" class="latex-formula">