Могу предложить следующее решение. Решим систему способом сложения для этого складываем оба уравнения: х²-у²+х²+у²=16+34; 2х²=50; х²=50:2; х²=25; х=5 и х=-5. Подставляем значение х в любое уравнение системы и находим у: 25-у²=16; -у²=16-25; у²=9; у=3 и у=-3. На координатной плоскости отмечаем точки: на оси ОХ 5 и -5, на оси ОУ 3 и -3. Соединяем эти точки и получим ромб. Известно что площадь ромба равна половине произведения его диагоналей. Находим диагонали ромба: по оси ОХ диагональ ромба равна 5+|-5|=10 (-5 берём по модулю потому, нам интересно расстояние от точки 0 до -5, а не само значение точки); по оси ОУ 3+|-3|=6. Теперь можем найти площадь ромба: S=1/2*10*6=30.