Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до...

0 голосов
731 просмотров

Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD , если AB = 20 , CD = 48 , а расстояние от центра окружности до хорды AB равно 24.


Математика (15 баллов) | 731 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Обозначим т.О - центр окружности. Рассмотрим треугольник АОВ. Он равнобедренный, так как его стороны равны радиусу окружности. Расстояние от т.О до хорды АВ - это высота этого треугольника, а значит и медиана. Обозначим Р - пересечение высоты с АВ. Из прямоугольного треугольника ОРА находим гипотенузу, которая является радиусом окружности: r=√(10²+24²)=√676=26.

Рассматривая аналогичный прямоугольный треугольник, только построенный на хорде СD, найдем катет, который является высотой равнобедренного треугольника СOD, тем самым является искомым расстоянием до хорды CD:
h=√(26²-24²)=√100=10.
Ответ: расстояние до хорды CD равно 10см

(3.6k баллов)