1
10sinxcosx+5cosx-8sinx-4=0
5cosx(2sinx+1)-4(2sinx+1)=0
(2sinx+1)(5cosx-4)=0
sinx=-1/2
x=(-1)^(n+1)*π/6+πn,n∈Z
x=-13π/6∈[-5π/2;-3π/2]
сosx=0,8
x=+-arccos0,8+2πk,k∈z
x=-5π/2+arccos0,8∈[-5π/2;-3π/2]
x=-3π/2-accos0,8∈[-5π/2;-3π/2]
2
2sin²x-√3sinx=0
sinx(2sinx-√3)=0
sinx=0⇒x=πn,n∈z
x=-π∈[-3π/2;3π]
x=0∈[-3π/2;3π]
x=π∈[-3π/2;3π]
x=π∈[-3π/2;3π]
x=2π∈[-3π/2;3π]
x=3π∈[-3π/2;3π]
sinx=√3/2
x=(-1)^k*π/3+πk,k∈z
x=-4π/3∈[-3π/2;3π]
x=π/3∈[-3π/2;3π]
x=2π/3∈[-3π/2;3π]
3
2sin²x+2sinxcosx=0
2sinx(sinx+cosx=0
sinx=0⇒x=πn,n∈z
x=-3π∈[-3π;-3π/2]
x=-2π∈[-3π;-3π/2]
sinx+cosx=0/cosx
tgx+1=0
tgx=-1
x=-π/4+πk,k∈z
x=-9π/4∈[-3π;-3π/2]