А)
√36 - 3√(-27) + 3√64=
√6² - 3√(-3)³ + 3√4³=
6-(-3)+4= 10+3=13
б)
(9/16)^-1/2 + (1 2/5)^-1=
√(4²/3²) + (5/7) =
4/3 + 5/7=
1 1/3 + 5/7=
1 7/21 + 15/21=
1 22/21 = 2 1/21
в)
3√(√8-4) * 3√(√8+4)=
3√(2^3/2 - 2^2) * 3√(2^3/2 + 2^2)=
(2^3/2 - 2^2)^1/3 * (2^3/2 + 2^2)^1/3=
(2^3/2*2 - 2^2*2)^1/3=
(2^3 - 2^4)^1/3=
(8-16)^1/3=
(-8)^1/3=
((-2)^3)^1/3= - 2
г)
(3/4)^5/8 * (1 1/3)^1 5/8=
(3/4)^5/8 * (4/3)^1 5/8=
(4/3)^-5/8 * (4/3)^1 5/8=
(4/3)^-5/8+ 1 5/8=
(4/3)^1= 4/3= 1 1/3
д)
√3 * 3√3 * 6√3=
3^1/2 * 3^1/3 * 3^1/6=
3^1/2+1/3+1/6 =
3^3/6+2/6+1/6 =
3^6/6= 3^1= 3
е)
(3√(-2))^12 + 4√((-2)^8)=
(-2)^12/3 + (-2)^8/4=
(-2)^4 + (-2)^2=
16 + 4= 20