Помогите плз!Только с подробным решением. Радиус окружности с центром в точке O равен 65...

0 голосов
166 просмотров

Помогите плз!Только с подробным решением.
Радиус окружности с центром в точке O равен 65 см, длина хорды AB равна 126 см. Найдите расстояние от хорды AB до параллельной ей касательной k


Геометрия (80 баллов) | 166 просмотров
Дан 1 ответ
0 голосов

Обозначим точку касания как К. Соединим К с центром О. ОК - радиус окружности и перпендикулярен касательной по определению. Более того, он проходит через середину хорды АВ и перпендикулярен ей.
Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам.
Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD.
Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63.
 Далее по теореме Пифагора находим второй катет - АО.
И находим расстояние. Это будет ОК-АО.

(2.8k баллов)
0

найти надо было не это, а отрезок между касательной и хордой

0

Извини, надо читать не АО, а ОD. Искомый отрезок есть разница ОК и ОD, где ОК - радиус.