Возьмем треугольник АВС: АВ=ВС=13, АС=24. Из угла В опустим высоту ВН к стороне АС. Т.к. треугольник равнобедренный ВН будет являться также медианой и поделить АС напополам, то есть АН=НС=24/2=12.
Рассмотрим треугольник АВН: угол Н=90°, АВ=13, АН=12. Найдём ВН по теореме Пифагора ВН^2=АВ^2-АН^2=13^2-12^2=169-144=25; ВН=√25=5.
Теперь можно и площадь АВС найти: S=1/2*AC*BH=1/2*24*5=60.