Сума перших трьох членів геометричної прогресії дорівнює 26,а сума наступних трьох...

0 голосов
102 просмотров

Сума перших трьох членів геометричної прогресії дорівнює 26,а сума наступних трьох дорівнює 702.Знайдіть суму перших п'яти членів прогресії


Алгебра (17 баллов) | 102 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

A₁+a₁q+a₁q²=26                a₁(1+q+q²)=26
a₁q³+a₁q⁴+a₁q⁵=702        a₁q³(1+1+q²)=702
Разделим второе уравнение на первое:
a₁q³(1+q+q²)/(a₁(1+q+q²)=702/26
q³=27=3³
q=3   ⇒  a₁=26/(1+3+3²)=26/13=2
S₅=26+a₁q³+a₁q⁴=26+2*3³+2*3⁴=26+2*27+2*81=26+54+162=242
Ответ: S₅=242.

(255k баллов)