В треугольнике ABC биссектрисы внешних углов при вершинах В и А пересекаются в точке D....

0 голосов
78 просмотров

В треугольнике ABC биссектрисы внешних углов при вершинах В и А пересекаются в точке D. Найдите угол BDA, если ВСА = 28°.


Геометрия (29 баллов) | 78 просмотров
Дан 1 ответ
0 голосов

Угол А треугольника АВС - 1, угол В - 2. Внешний угол при вершине А биссектриса делит на 3+3, а внешний угол  при вершине В биссектриса делит на 4+4.

1+2+28=180    1+2 = 152.

3+3+1=180  как смежные

4+4+2 =1 80 как смежные

складываем эти уравнения

3+3+1+4+4+2 = 360, но 1+2 = 152, значит 3+3+4+4 +152 = 360, 3+3+4+4 = 208  3+4=104.

В треугольнике АДВ сумма двух углов 3 и 4 равна 104. 
Значит третий угол ВДА  равен 180-104 = 76

(515 баллов)
0

спасибо