Основания трапеции делятся точкой касания на два отрезка, один из которых равен радиусу, т.е. 3.
Обозначим эти отрезки как а и b, где а принадлежит большему основанию. Тогда a-b=8.
По свойству прямоугольной трапеции, в которою вписана окружность, произведение отрезков, на которые делит точка касания, боковую сторону равно радиусу в квадрате. Т.к. эти отрезки равны а и b, по свойствам касательных, проведенных к окружности из одной точки, мы можем записать a*b=9.
Имеем систему уравнений. {a-b=8
a*b=9
Находим a и b. а=9, b=1.
Далее находим основания: 3+9=12, 3+1=4, и боковые стороны 3+3=6, 9+1=10. Суммируем и получаем периметр.