Решение:
1) Рассмотри основание. Это квадрат АВСD, т.е АВ=ВС=СD=АD В нем диагональ АС= 2V2 см. В этом квадрате рассмотри треугольник АВС. Угол В=90 град., АВ=ВС, значит по теореме Пифагора: АС^2 = AB^2 + BC^2 = 2AB^2 => AB^2 = AC^2 / 2 = (2V2)^2 / 2 = 4 см^2 => AB = V4 = 2 см - сторона квадрата основания
2) Точка S равноудалена от каждой стороны квадрата. Это значит, что расстояния AS=BS=CS=DS и проекция точки S на основание АВСD будет находиться в центре квадрата АВСD в точке О.
3) Теперь рассмотри треугольник АОS. Угол АОS= 90 град. OS = 3 см АО = 1/2 AC = 1/2*(2V2) = V2 см По теореме Пифагора: AS=AO^2 + OS^2 = (V2)^2 + 3^2 = 2+9=11 см.
4) Расстояние от точки S до стороны АВ измеряется перпендикуляром SK, проведенным из точки S к стороне АВ. Точка К лежит на АВ и АК=КВ=AB/2=2/2=1 cм Для этого рассмотри еще один треугольник - ASB. В нем: SA=SB= 11 см АВ =2 см => SA^2 = AK^2 + SK^2 => SK^2 = SA^2 - AK^2 = 11^1 - 1^2 = 121-1=120 SK=V120=2V30 см