Биссектрисы углов B и C параллелограмма ABCD пересекаются в точке M стороны AD. Докажите,...

0 голосов
32 просмотров

Биссектрисы углов B и C параллелограмма ABCD пересекаются в точке M стороны AD. Докажите, что M — середина AD.
помогите пожалуйста


Геометрия (84 баллов) | 32 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Биссектрисы ВМ и СМ, пересекаясь с точкой М, принадлежащей стороне АD, образуют треугольники со стороной АD и боковыми сторонами. Образованные треугольники равнобедренные.
Рассмотрим треугольник АВМ. Углы АВМ и АМВ равны, т.к. угол АМВ равен углу МВС как внутренний накрест лежащий, а углы АВМ и МВС равны по условию (ВМ - биссектриса). Следовательно треугольник АВМ равнобедренный, и АВ=АМ. Аналогично доказываем, что СD=MD.
Коль скоро АВ=CD как стороны параллелограмма, то АМ=МD, т.е. точка М есть середина АD.

(2.8k баллов)