Сколько различных решений имеет система уравнений (x1 ˅ x2) ˄ ((x1 ˄ x2) → x3) = 1 (x2 ˅...

0 голосов
67 просмотров

Сколько различных решений имеет система уравнений

(x1 ˅ x2) ˄ ((x1 ˄ x2) → x3) = 1
(x2 ˅ x3) ˄ ((x2 ˄ x3) → x4) = 1
(x3 ˅ x4) ˄ ((x3 ˄ x4) → x5) = 1
(x4 ˅ x5) ˄ ((x4 ˄ x5) → x6) = 1
(x5 ˅ x6) ˄ ((x5 ˄ x6) → x7) = 1
(x6 ˅ x7) ˄ ((x6 ˄ x7) → x8) = 1
(x7 ˅ x8) = 1

где x1,x2,…,x8 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.


image

Информатика (15 баллов) | 67 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решение на фото.
Если ответ не сойдётся, то пишите, будем думать, что делать дальше.


image
(87.0k баллов)