Как доказать теорму о центре вписанной в треугольник окружности?

0 голосов
16 просмотров

Как доказать теорму о центре вписанной в треугольник окружности?


Геометрия (28 баллов) | 16 просмотров
Дан 1 ответ
0 голосов

Теорема: Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
Доказательство: Действительно, вписанная в треугольник ABC окружность с центром в точке O касается всех сторон треугольника по определению вписанной окружности. Это значит, что точка O удалена от сторон треугольника ABC на расстояние, равное радиусу вписанной окружности, то есть точка O равноудалена от сторон треугольника ABC. Следовательно, точка O равноудалена от сторон AB и AC, то есть лежит на биссектрисе угла A. Аналогично точка O лежит на биссектрисе углов B и C. Теорема доказана.
Мы знаем, что центр окружности равноудален от всех точек окружности (по определению) в том числе и от точек касание сторон треугольника. Также мы знаем, что каждая точка биссектрисы угла равноудалена от сторон угла. А точка пересечения биссектрис треугольника равноудалена от каждой стороны, т. к. равноудалена от трех пар сторон для кадой биссектрисы. Таким образом, в треугольнике есть только одна точка равноудаленная от всех сторон - это пересечение биссектрис треугольника. Поэтому центр лежит именно в этой точке. 

(495 баллов)