Найдите частное решение дифференциального уравнения.(с этапами решения) Не могу...

0 голосов
39 просмотров

Найдите частное решение дифференциального уравнения.(с этапами решения)
Не могу "разделить переменные". Кто сможет помогите буду благодарен!

(x^2-y^2)*y`=2xy, y(1)=1

y` - в производной


Математика (36 баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Имеем однородное уравнение. Решаем стандартно - замена t(x) = y(x) / x
Тогда y = t x, y' = x t' + t

(1 - t^2) x^2 (x t' + t) = 2 x^2 t
(1 - t^2) (x t' + t) = 2t
x t' = 2t / (1 - t^2) - t = t (1 + t^2) / (1 - t^2)

В таком уравнении переменные разделять уже очень просто.
dt * (1 - t^2) / (t (1 + t^2)) = dx / x
Интегрируем левую часть:
\displaystyle \int \frac{1+t^2-2t^2}{t(1+t^2)}dt=\ln |t|-\ln(1+t^2)+\ln|C|
Правая часть - ln|x|.

Итак, \ln |t|-\ln(1+t^2)+\ln|C|=\ln|x|
Домножаем на двойку и берем экспоненту обеих частей:
\dfrac{C^2t^2}{(1+t^2)^2}=x^2

Константу определим прямо сейчас, заметив, что t(1) = y(1) / 1 = 1, С^2 = 4.

(При решении учтено, что y(1) = 1).
\dfrac{4y^2/x^2}{(1+y^2/x^2)^2}=x^2\\ \dfrac{4y^2}{(x^2+y^2)^2}=1\\ (x^2+y^2)^2-4y^2=0\\ (x^2+y^2-2y)(x^2+y^2+2y)=0\\ x^2+y^2-2y=0\\
(y-1)^2=1-x^2\\
y=1\pm\sqrt{1-x^2}

Это и есть ответ. Полезно отметить, что условия для теорем единственности не выполнены, и решение не единственно (и, вообще говоря, всё настолько плохо, что решения не дифференцируемы в точке x = 1) 

(148k баллов)