1)sinx=a, -1≤a≤1 ⇒ x=(-1)^n *arcsina+πn, n∈Z
2)cosx=√3/2, x=±arccos√3/2+2πn, x=±π/6+2πn, n∈Z
3)sin2x=√2/2, 2x=(-1)^n *arcsin√2/2+πn, 2x=(-1)^n*π/4+πn, x=(-1)^n*π/8+πn/2, n∈Z
4)3-√3tg(x-π/10)=0, tg(x-π/10)=3/√3=√3, x-π/10=arctg√3+πn, x-π/10=π/3+πn,
x=π/10+π/3+πn, x=13π/30+πn, n∈Z
5) sinx≤1/2, 5π/6+2πn≤x≤13π/6+2πn, n∈Z
6)cosx>√2/2, -π/4+2πn
7)sinx>-√2/2, -π/4+2πn
8)cos(2x+π/6)≤-1/2, 2π/3+2πn≤2x+π/6≤4π/3+2πn,
π/2+2πn ≤2x≤7π/6+2πn
π/4+πn≤x≤7π/12+πn, n∈Z
9) cosx=a, x=±arccosx+2πn? n∈Z, -1≤a≤1
10) sinx=1/2, x=(-1)^n*π/6+πn, n∈Z
11) cosx/3=1/2, x/3=±π/3+2πn, x=±π+6πn, n∈Z
12)3tg(2x+π/10)-3√3=0, tg(2x+√/10)=√3, 2x+π/10=π/3+πn, 2x=7π/30+πn,
x=7π/60+πn/2, n∈Z
13)tgx≥1, π/4+πn ≤x<π/2+πn, n∈Z</p>
14) sinx<√2/2, 3π/4+2πn<x<9π/4+2πn, n∈z</p>
15)cosx≤-1/2, π/3+2πn≤x≤5π/3+2πn, n∈Z
16)3tg(x/4-π/3)≥√3, tg(x/4-π/3)≥√3/3, π/6+πn≤x/4-π/3<π/2+πn,</p>
3π/6+πn≤x/4<5π/6+πn, 2π+4πn≤x<10π/2+4πn, n∈Z </p>