В выпуклом четырехугольнике ABCD угол BAC = углу CBD и угол ACD равен углу BDA . докажите...

0 голосов
299 просмотров

В выпуклом четырехугольнике ABCD угол BAC = углу CBD и угол ACD равен углу BDA . докажите , что AC^2=BC^2+AD^2


Геометрия (29 баллов) | 299 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть О - точка пересечения диагоналей четырехугольника ABCD. Треугольник ABC подобен треугольнику BOC по двум углам (∠С у них общий и  ∠BAC=∠CBO по условию), значит BC/OC=AC/BC,
т.е. BC²=OC·AC. Аналогично, из подобия треугольников CDA и DOA получаем AD/AO=AC/AD, т.е. AD²=AO·AC. Итак,
BC²+ AD²=OC·AC+AO·AC=(OC+AO)·AC=AC².

(56.6k баллов)