Какая облась значения функции? (ФОТО)

0 голосов
29 просмотров

Какая облась значения функции? (ФОТО)


image

Алгебра (12 баллов) | 29 просмотров
Дан 1 ответ
0 голосов

Сначала рассмотрим область определения функции f(x):
5-4x-x^2>=0,
-(x+5)(x-1)>=0
x∈[-5;1]
Теперь найдем производную для определения промежутков возрастания и убывания.
f'(x)= \frac{ \frac{1}{2 \sqrt{5-4x-x^2} }(-4-2x)(x+2) - \sqrt{5-4x-x^2} }{(x+2)^2}=
-\frac{\frac{(x+2)^2 }{ \sqrt{5-4x-x^2} } +\sqrt{5-4x-x^2}}{(x+2)^2} \ \textless \ 0
Поэтому функция постоянно убывает. Но теперь рассмотрим ее вертикальную асимптоту x=-2. Найдем левосторонний и правосторонний пределы функции f(x) в точке x=-2:
\lim_{x \to -2-0} f(x)= \lim_{x \to -2-0} \frac{ \sqrt{5-4x-x^2} }{x+2} =[ \frac{3}{-0} ] =-\infty
\lim_{x \to -2+0} f(x)= \lim_{x \to -2+0} \frac{ \sqrt{5-4x-x^2} }{x+2} =[ \frac{3}{0} ] =\infty
Таким образом, при x∈[-5;-2) функция изменяется от 0 до -∞. При x∈(-2;1] функция изменяется от +∞ до 0.
Область значений функции получается (-∞;+∞). Для наглядности прилагаю рисунок.


image
(16.7k баллов)