В данном случае f''(x)=6x+2. Подставляем значения экстремумов. f''(0)=2; 2>0, значит это локальный минимум функции. f''(-2/3)=-(2/3)*6+2=-2; -2<0, значит это локальный максимум. Следовательно до максимума (-2/3) функция возрастает, потом убывает до минимума (0) и потом снова возрастает.