– точки экстремума – это общее название точек минимума и максимума;
– экстремумы – это общее название минимумов и максимумов.
Начнём с функции двух переменных , применительно к которой точки экстремума – это точки плоскости , а экстремумы – соответствующие значения функции («высоты»). Также экстремумами иногда называют точки самой поверхности.
Да, и сразу важное напутствие для «чайников», нормальных студентов
=) и сомневающихся – рассматриваемый материал сам по себе прост, но
требует базовых знаний и навыков в нескольких разделах высшей
математики. Поэтому если у вас возникнет (или уже возникло) какое-либо недопонимание по ходу изложения, то проставленные ссылки в помощь.
Итак, «действующие лица» следующие: функция , внутренняя точка её области определения и -окрестность данной точки. Для удобства считаем, что окрестность представляет собой круг радиуса с центром в точке (в учебной литературе чаще встречается окрестность-квадрат).
Определение: если в некоторой -окрестности точки выполнено неравенство , то говорят, что функция имеет минимум в точке .
При этом точка называется точкой минимума, а соответствующее значение функции («высота») – минимумом. Ещё раз призываю не путаться в терминах!
Простейший пример минимума – это вершина эллиптического параболоида, чаша которого направлена вверх:
Давайте ещё раз внимательно перечитаем определение и вдумаемся в
его суть. Сформулированное определение говорит нам о том, что функция достигает минимума в точке , если существует хоть какая-то -окрестность этой точки, в которой значение высоты меньше ВСЕХ ОСТАЛЬНЫХ значений .
Следует отметить, что в нашем примере под определение подходит вообще любая -окрестность, т.к. поверхность уходит вверх на бесконечность и никаких точек ниже – нет в принципе. Такой минимум называют глобальным.