4
4cos²x-sinxcosx=0
cosx(4cosx-sinx)=0
cosx=0⇒x=π/2+πn,n∈z
4cosx-sinx=0/cosx
4-tgx=0
tgx=4⇒x=arctg4+πk,k∈z
6
cos(3x-π/3)sin(3x-π/3)≥1/2
1/2sin(2x-2π/3)≥1/2
sin(6x-2π/3)≥1/2
|sina|≤1⇒sin(6x-2π/3)=1
6x-2π/3=π/2+2πn
6x=2π/3+π/2+2πn
6x=7π/6+2πn
x=7π/36+πn/3,n∈z