Плоскость сечения будет проходить через вершины А, А1, С и С1 т.к. АА1║СС1 и АС║А1С1.
В правильной четырёхугольной призме диагонали ВД1 и АС1 равны. Поскольку в основании квадрат, то АС=ВД; все боковые рёбра призмы равны, значит в прямоугольных треугольниках АСС1 и ВДД1 катеты равны, следовательно равны и гипотенузы АС1 и ВД1.
В тр-ке АСС1 АС²=АС1²-СС1²=17²-8²=225,
АС=15.
АСС1А1 - прямоугольник, площадь которого:
S=АС·АА1=15·8=120 (ед²) - такой ответ.