Прямые O1B II O2C.
Это можно показать кучей сопособов, например тем, что дуги АВ малой окружности и АС большой соответствуют углу между общей касательной в точке А и секущей ВС, а углы CO2A и AO1B - центральные углы этих дуг, то есть они равны, откуда O1B II O2C.
Можно просто рассмотреть два равнобедренных треугольника ABO1 и ACO2, у которых углы при основании равны, и равны, по условию, 45/2 градусов, между прочим.
Поэтому нужно найти расстояние от О2 до прямой BO1, при том, что угол наклона О2О1 к ВО1 - это внешний угол при вершине равнобедренного треугольника AO1B, равный 45 градусам.
То есть высота треугольника BO1A равна H = (2 + 10)*√2/2 = 6√2, а площадь
S = H*BO1/2 = (6√2)*2/2 = 6√2