ПОМОГИТЕ РЕШИТЬ, ГЕОМЕТРИЯ 10 КЛАСС. В правильной четырёхугольной пирамиде РАВСD сторона...

0 голосов
128 просмотров

ПОМОГИТЕ РЕШИТЬ, ГЕОМЕТРИЯ 10 КЛАСС.
В правильной четырёхугольной пирамиде РАВСD сторона основания АВ = 10 см, высота РH = 5√(6 ) см. Найти угол наклона бокового ребра пирамиды к плоскости её основания; площадь сечения, проходящего через высоту и боковое ребро.


Геометрия (28 баллов) | 128 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

В основании правильной четырехугольной пирамиды - квадрат со стороной 10 см
Угол наклона бокового ребра пирамиды к плоскости - угол между боковой гранью и диагональю основания.
Диагональ квадрата - 10√2 см. 
Рассматриваем треугольник НРС - прямоугольный, РН=5√6, НС=5√2.
По т. Пифагора РС=10√2.
В треугольнике НРС катет НС в два раза меньше гипотенузы РС ⇒
∠Р=30°, ∠С (искомый ) - 60°.
Площадь сечения - площадь треугольника АРС - РН*АС/2=50√3 см².

(27.0k баллов)