Решите систему уравнений x²+y²=17 y-x=3

0 голосов
61 просмотров

Решите систему уравнений x²+y²=17 y-x=3


Алгебра (20 баллов) | 61 просмотров
Дано ответов: 2
0 голосов

\left \{ {{x^{2}+y^{2}=17 } \atop {y-x=3}} \right. 

 

y-x=3
x=y-3

x^2+y^2=17
(y-3)^2+y^2=17 

2y^2-6y-8=0

D=(-6)^2-4*2*(-8)=36+64=100

y1=(10-(-6))/(2*2)=16/4=4
y2=(-10-(-6))/(2*2)=-4/4=-1

y-x=3

4-x=3

x1=1


(-1)-x=3

x2=-4

Ответ: y1=4; y2=-1; x1=1; x2=-4.

(13.7k баллов)
0 голосов

1)у=3+х
подставляем:
х^2+(3+х)^2=17
х^2+9+6х+х^2=17
2х^2+6х-8=0
D(дискриминант)=36+4*2*8=36+64=100=10^2
х1;2=(-6 +/- 10)/4=4;1
2)если х=4,то у=7
если х=1,то у=4

(600 баллов)