Три числа, сумма которых равна 84, образуют геометрическую прогрессию. Они являются...

0 голосов
49 просмотров

Три числа, сумма которых равна 84, образуют геометрическую прогрессию. Они являются первым, шестым и шестнадцатым членами арифметической прогрессии, разность которой отлична от нуля. Найдите наибольшее из этих чисел.


Алгебра (10.7k баллов) | 49 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Знаменатель геометрической прогрессии должен быть равен 2, тогда, если х - первое число, то 2х - второе число, 4х - третье число, по условию сумма чисел 84, поэтому х+2х+4х = 84, 7х = 84, х = 12, 2х = 24, 4х = 48. Действительно, эта тройка чисел подходит и для арифметической прогрессии: 12 = 24-5d; 5d = 12; d = 2,4; 12 = 48-15d; 15d = 36; d = 2,4 ; 2,4 = 2,4 (верно). Наибольшее из трёх чисел = 48. Ответ: 48.  

(2.1k баллов)