Пусть √((3-x)/(x+1))=t. Тогда t+1/t = 17/4
t^2-17t/4 + 1 = 0
D = 289/16 - 4 = 225/16
t1,2 = (17/4 +- 15/4) / 2 = (17+-15)/8
t1 = 4
t2 = 1/4.
Вернемся к исходной переменной:
1) √((3-x)/(x+1)) = 4
(3-x)/(x+1) = 16
3-x = 16x+16
17x = -13
x = -13/17
2) √((3-x)/(x+1)) = 1/4
(3-x)/(x+1) = 1/16
48-16x = x+1
47=17x
x=47/17.
Ответ: -13/17, 47/17.