Существует ли натуральное число, имеющее ровно 2016 делителей?
Допустим, есть такое число N. Разложим его на простые множители. N=a1^p1*a2^p2*...*an^pn У этого числа всегда есть делитель 1. Посчитаем остальные делители. Множитель а1^р1 даёт р1 делителей. Множитель а2^р2 даёт р2 делителей. И так далее. Всего делителей будет p1*p2*...*pn+1=2016 p1*p2*...*pn=2015=5*13*31 Значит, число, например, N=2^31*3^13*5^5 будет иметь 2016 делителей. (Автор: znanija.com/profil/mefody66-2376814)