Докажите, что {х│х=4n-1,n-целое число}={х│х=4m+3,m-целое число}.

0 голосов
30 просмотров

Докажите, что {х│х=4n-1,n-целое число}={х│х=4m+3,m-целое число}.


Алгебра (61 баллов) | 30 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Множество целых чисел:
\mathbb Z=\{...-1,0,1...\}
Т.е. все отрицательные и натуральные числа.

Множества называются равными если:
A \subseteq B и B\subseteq A

Пусть:
A=\{x|x=4n-1,n\in \mathbb Z\}
B=\{x|x=4m+3,m\in \mathbb Z\}

Так как x=x
То:
4n-1=4m+3
Т.е. либо n зависит от m:
n= m+1
Либо m от n:
m=n-1

Теперь, если A\nsubseteq B то,значит, есть такой элемент a\in A так что a\notin B.
Т.е. выполняется:
a=4n-1 \Rightarrow n= \frac{a+1}{4}
Значит:
\frac{a+1}{4} \neq m+1

Но мы знаем что для каждого n и m выполняется n=m+1. Значит противоречие и наше предположение о том что А не является подмножеством В не верно.
Т.е. 
A\subseteq B

Теперь, если предположить что B\nsubseteq A, то значит есть такой элемент b\in B так что: b\notin A

Т.е. выполняется:
b=4m+3 \Rightarrow m= \frac{b-3}{4}

Значит :
\frac{b-3}{4} \neq 4n-1

Но этого не может быть. Значит противоречие.
B\subseteq A

Отсюда следует:
A=B

(46.3k баллов)