Y = (x^2 - 3x+3) e^3-x;
y '(x) = (x^2 - 3x+3) ' * e^ 3-x + (x^2 - 3x + 3)* (e^3-x) ' =
= (2x-3)*e^3-x + (x^2 -3x+3) *e^3-x * (-1) =
=(2x-3)*e^3-x - (x^2 - 3x +3) *e^3-x=
= e^3-x(2x-3-x^2 +3x - 3) = e^3-x(-x^2+x - 6) = - e^x-3(x^2 -x +6)= 0;
e^3-x >0 ;
- (x^2 - x + 6) = 0
-( x-3)(x+2) = 0;
- + -
_______(-2)________(3)_______x
Исследовали функцию на максимум и минимум, получили х= 3 - точка максимума.
Наибольшее значение функции будет в точке х = 3 (она принадлежит заданному интервалу).
Подставляем и считаем.
у наиб. = у(3) = (3^2 - 3*3 + 3) * e^(3-3) = 3 * e^0 = 3*1= 3.
Все эти действия можно было не делать, если заметить одну особенность этого условия, так как это задание №12 из ЕГЭ, в ответе должг\но быть красивое число число, безо всяких ешек. А такое красивое число получится лишь, когда степень у числа будет равна 0.
То есть находим
х - 3 = 0.
х = 3.
Дальше подставляем и находим наибольшее значение функции