Решить уравнение sin x + cos x = 1
2sin(x/2)cos(x/2)+cos²(x/2)-sin²(x/2)-sin²(x/2)-cos²(x/2)=0 2sin(x/2)cos(x/2)-2sin²(x/2)=0 2sin(x/2)*(cos(x/2)-sin(x/2))=0 sin(x/2)=0⇒x/2=πn⇒x=2πn,n∈z cos(x/2)-sin(x/2)=0/cos(x/2) 1-tg(x/2)=0 tg(x/2)=1⇒x/2=π/4+πk⇒x=π/2+2πk,k∈z
Возведем обе части в квадрат (sinx+cosx)²=1 sin²x+2sinxcosx+cos²x=1 1+sin2x=1 sin2x=0 2x=πk, k∈Z x=πk/2, k∈Z