В правильную треугольную пирамиду вписанна сфера. площадь основания равна 6,2.найдите...

0 голосов
45 просмотров

В правильную треугольную пирамиду вписанна сфера. площадь основания равна 6,2.найдите площадь полной поверхности пирамиды ,если точка касания сферы с боковой гранью является центром вписанной окружности в боковую грань.


Геометрия (1.8k баллов) | 45 просмотров
0

площадь основания равна 6,2 ?

0

да

0

Больше никаких данных?

0

нет больше

Дано ответов: 2
0 голосов
Правильный ответ

Решение в приложении.

(72.0k баллов)
0 голосов

Сфера вписана в правильную пирамиду, значит основание высоты лежит в центре вписанной в основание окружности. r₀=ВМ.
Радиус сферы - отрезки КО и МО. r₁=КО=МО.
Прямоугольные треугольники РКО и РМО равны, так как КО=МО и РО - общая сторона.
По условию РК - радиус вписанной в боковую грань окружности. 
В тр-ках АВЕ и АВС радиусы вписанных окружностей равны, АВ - общая сторона, оба треугольника равнобедренные, значит треугольники равны.
В пирамиде ЕАВС боковые грани равны основанию, следовательно их площади равны, значит площадь полной поверхности пирамиды:
Sполн=4Sосн=4·6.2=24.8 (ед²) - это ответ.


image
(34.9k баллов)