Дано: ΔАВС -прямоугольный, окружность с центром О, АС=5, ВС=12.
Решение:
АО=ОК=R - радиусы окружности
проведем еще один радиус R в точку касания Н.
следует знать теорему: "Радиус, проведенный в точку касания перпендикулярен самой касательной."
То есть ∠ОНВ=90°
по теореме Пифагора найдем гипотенузу АВ
АВ=√(АС²+ВС²)=√(5²+12²)=13
Если АВ=13 и АО=R, то ОВ=АВ-АО=13-R
рассмотрим ΔАВС и ΔВОН
∠АСВ=∠ОНВ=90°
∠АВС -общий, следовательно треугольники подобны по двум углам.
Если треугольники подобны, то можно составить пропорцию