ΔАВС равнобедренный, АВ=ВС ⇒ ∠А=∠В , точка Д∈АС ,
ДК║ВС , ДМ║АВ .
∠АДК=∠АСВ как соответственные углы при параллельных ДК и СМ и секущей АС .
∠А=∠АСМ=∠АДК ⇒ ΔАДК равнобедренный , АК=ДК .
∠А=∠СДМ как соответственные при параллельных АВ и ДМ и секущей АС,
∠СДМ=∠ВАС=∠ВСА ⇒ ΔДСМ равнобедренный, ДМ=СМ .
Периметр четырехугольника ВМДК равен
Р=ВК+ВМ+ДМ+ДК=ВК+ВМ+МС+АК=(ВК+АК)+(ВМ+МС)=АВ+ВС,
что и требовалось доказать.