(1-cos(2π/3+2x))/2+(1-cos(2π/3-2x)/2+(1-cos2x)/2=
=1/2*(1-cos(2π/3+2x)+1-cos(2π/3-2x)+1-cos2x)=
=1/2*(3-cos2π/3*cos2x+sin2π/3*sin2x-cos2π/3*cos2x-sin2π/3*sin2x-cos2x)=
=1/2(3-2cos2π/3*cos2x-cos2x)=1/2*(3-2*(-1/2)*cos2x-cos2x)=
=1/2*(3+cos2x-cos2x)=3/2=1,5